Q1. The circuit shown in **Figure 1** uses an ideal op-amp as a voltage comparator. It is used in a frost warning device in which the LED lights when the temperature falls to 0°C. **Figure 2** shows the variation of resistance with temperature of the thermistor.

Figure 1

Figure 2

Cal	culate the resistance of R₁ to allow the output to switch at 0°C.
Whe	en the LED is on, the current through it is 20 mA and the p.d. across it is 2.0 \text{ \text{'}}
	en the LED is on, the current through it is 20 mA and the p.d. across it is 2.0 \text{culate}
Calc	culate
	culate the resistance of resistor R_2 ,
Calc	the resistance of resistor R ₂ ,
Calc	the resistance of resistor R ₂ ,
Calc	the resistance of resistor R ₂ ,
Calc	the resistance of resistor R ₂ ,
Calc	the resistance of resistor R ₂ ,
Calc	the resistance of resistor R ₂ ,
Cald	the resistance of resistor R ₂ ,

Q2.In the circuit shown, an ideal operational amplifier is used as a voltage comparator.

(a)	The voltage $V_{\scriptscriptstyle \rm in}$ is steadily increased from 0 V. Calculate $V_{\scriptscriptstyle \rm in}$ when the sign of $V_{\scriptscriptstyle m ou}$
	changes from negative to positive.

(2)

(b) (i) The op-amp is required to operate an LED. Add to the circuit an LED and its limiting resistor so that the LED lights when $V_{\mbox{\tiny in}}$ is less than the value calculated in part (a).

(ii)	Explain why the LED functions in the position you have drawn it.

(iii) Calculate the minimum value for the limiting resistor with the LED. Assume that the LED has a voltage drop of 2.0 V across it when emitting and a maximum current of 25 mA through it.

(5)

(c) An LDR is now connected between the points A and B in the circuit. The characteristic of the LDR is shown below.

Determine the light intensity at which the LED Switches.	
	•
	•
	•

(3)

Q3. (a)	State	two characteristics of an operational amplifier.	
			(2)
(b)	(i)	Draw a circuit diagram showing an operational amplifier used as an inverting voltage amplifier.	
	(ii)	Give suitable values for the components you have used in the circuit for a voltage amplification of magnitude 150.	
			(4)
(c)	Whe	en negative feedback is used with an amplifier the bandwidth increases.	
	(i)	Explain what is meant by negative feedback as applied to the circuit drawn in part (b).	
	(ii)	Give one other advantage of using negative feedback in this application.	
	(iii)	State what is meant by the bandwidth of an amplifier.	

(iv)	Indicate on the graph below, by means of a horizontal line, the bandwidth of the amplifier whose characteristic is shown.

Page 7